2023-07-12 20:10:13 | 高校网
左导数存在得出左连续,右导数存在得出右连续。
于是,由函数在该点处两侧均单侧连续的条件,函数在该点连续。
本来这是一个简单的问题,不是很有回答的意愿,但是偏偏有个自以为是的人,在为数不多的回答中格外突出,我觉得是有必要作出一些指正的。一方面,作为被人挂上回答的回敬;另一方面,希望各位观望的同学不要被误导,并学习到正确的知识;
1、初等函数在其不连续点处不可导。
2、分段函数在分段点处的导数:
1)利用左右导数来求,可以用左右导数定义来分别求出左右导数,看其是否相等,若不等或有一个不存在,则不可导。
2)若在分段点处左右两侧都有解析式,也可利用解析式分别求两侧导数表达式,然后代入分段点的值,看是否相等,若相等则可导,否则不可导。
左右导数存在的判断方法?
从理论上来说,如果左导数等于右导数,而且在该点还得有定义,还得连续。从形状上,或从直觉上的判断方法是:用手去摸一摸:A、如果有刺、有尖尖角,就是不光滑,就是不可导;B、可导一定是光滑的,而光滑的不一定可导,例如圆的左右两侧,虽然光滑,但不可导。
这是学导数的过程中,经常会犯的错误,我以前也犯过。
往往做这类函数时,直接由两边的函数表达式算出导函数,带入x0.得到所谓的“左右导数相等”,但是这时候往往忘了导数的定义和定义公式。首先看看导数的定义公式:lim(x→x0)(f(x)-f(x0))/(x-x0)
你上面举的例子,用定义公式去算,就会发现,1、如果函数在x0点无定义,则f(x0)无意义,定义公式无法算出来,没有导数。
2、如果函数在x0点有定义,但即不和左边连续,也不和右边连续,那么当x→x0时,无论是从x0的右边还是左边,f(x)-f(x0)的极限都不可能是0(记住,这时候f(x0)不由左右表达式计算而来)。
3、如果函数在x0点有定义,和左边连续,那么必然不和右边连续,那么当x→x0时,右边的时候f(x)-f(x0)的极限都不可能是0(记住,这时候f(x0)是有左表达式计算而来),函数无右导数。
3、如果函数在x0点有定义,和右边连续,和3、类似,无左导数。所以可导比连续。 也举个你上面的例子来说明吧f(x)=x+1(x≥0);x-1(x<0)那么在x=0这点不连续,f(0)=1这样求左导数的时候,不能直接根据左边的表达式x-1求出左导数为1而应该根据定义公式lim(x→0-)(f(x)-f(0))/(x-0)=lim(x→0-)((x-1)-1)/x(记住f(0)由x+1算出来等于1,而不是由x-1算出来等于-1)=lim(x→0-)(x-2)/x很明显这个极限是无穷大,所以没有左导数。
首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。
可导的函数一定连续;不连续的函数一定不可导。
可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。
如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导定义:(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
(2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。
第一步:在要判断可导性的点的左右两端分别计算x趋向于这个点时函数的极限值,判定两个极限值是否存在且相等,若两个极限值不相等、其中有一个不存在或两个都不存在,则函数在该点处不连续,也就一定不可导;若两个极限值存在且相等,就进行下一步;
第二步:用导数的定义式,分别计算x从左和从右两个方向趋向于该点的极限值,若两个极限值都存在且相等,则判断为函数在该点处可导,且导数就等于该极限值;若两个极限值不相等、两个极限值中有一个不存在或两个极限值均不存在,则函数在该点处不可导。
首先判断函数在这个点x0是否有定义,即f(x0)是否存在;其次判断f(x0)是否连续,即f(x0-), f(x0+), f(x0)三者是否相等;再次判断函数在x0的左右导数是否存在且相等,即f‘(x0-)=f'(x0+),只有以上都满足了,则函数在x0处才可导。
可导的函数一定连续;不连续的函数一定不可导。
可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。
如果一个函数在x0处可导,那么它一定在x0处是连续函数。
两个可导函数的乘积的函数一定可导,因为若函数u(x),v(x)都可导,则

加减乘都可以推广到n个函数的情况,例如乘法:

求导运算也是满足线性性的,即可加性、数乘性,对于n个函数的情况:

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
扩展资料:
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。
2、两个函数的乘积的导函数:一导乘二+一乘二导。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。
4、如果有复合函数,则用链式法则求导。
高校网1.sinx-x为什么是3阶无穷小?2.高中数学八大思想十大方法?3.如何证明狄利克雷函数每一点极限都不存在?4.判断多元函数极限存在时为啥要用y=x?5.极限青春王一博背熊猫是哪一期?6.为什么极限存在函数值可以不存在?7.极限不存在怎么表示?1、sinx-x为什么是3阶无穷小?因为它的导数是cosx—1,这个函数与x^2同阶,所以sinx—x就是三阶无穷小。 使用洛必达(l\\'hospi
1.如何证明函数在一段区间上的连续性?2.函数连续的两种情况?3.怎样判断二元函数极值?4.分布函数的连续性什么意思?5.二元函数如何确定一个具有连续导数的函数?6.函数可微分和连续的关系?7.二元函数判断连续为什么能加绝对值?1、如何证明函数在一段区间上的连续性?求导f'(x)=4x^3-6x-1,可知f(x)在(0,2)内可导,所以f(x)在(0,2)内连续f(x)在x=0处的右极限等于-
1.连续但偏导数不存在?2.存在,偏导连续,可微,连续之间有什么联系?3.二阶偏导数连续和存在的区别?4.数学中,怎么判断连续、可导?5.证明偏导数是否连续?6.偏导存在,微分,连续之间的关系?7.什么是多元函数的偏导连续?1、连续但偏导数不存在?不一定,函数连续偏导数不一定存在。因为偏导数存在只能保证函数在某个方向上是连续的,比如关x连续,关y连续,但是实际上,多元函数连续,其极限手段比较复
1.为什么独立性检验是大概率事件?2.bg检验怎么判断是否存在自相关?3.SPSS如何独立性检验?4.概率论中的怎么证明两个随机变量独立?5.独立性检验k方的推导?6.独立性检验有什么简便的方法计算?1、为什么独立性检验是大概率事件?所谓独立性检验,指的是其利用了“两个互独立的事件同时发生的概率,等于两件事单独发生的概率的乘积”的原理进行检验。独立性检验的原假设是两个变量独立。大家知道,原假设
1.函数极限有界性的推论?2.函数的有界性定理?3.函数敛散性和有界性?4.二元函数有界定义?5.函数列有界怎么定义?6.为什么反比函数是有界函数?7.怎样证明有界函数还是无界函数?1、函数极限有界性的推论?在判别函数的有界性时,我们需要先知道以下两个重要结论,即:若函数f(x)在闭区间[a,b]上连续,则函数f(x)在闭区间[a,b]上有界。若函数f(x)在开区间(a,b)上连续,且端点处函
1.大学微积分,如何判断函数是连续函数?2.函数的连续性该怎样判断?3.如何证明函数是连续的?4.为什么二元可积不一定连续?5.二元初等函数连续可微吗?6.复变函数的连续性怎么证明?7.二元多次函数怎么判断奇偶性?1、大学微积分,如何判断函数是连续函数?1首先列出已知的函数f(x),目标是证明该函数在x=0处连续。2:计算出函数f(x)在x趋向于0时,极限等于0。3:同时根据f(0)=0,进行
1.一阶偏导的符号?2.一阶偏导数连续和存在的区别?3.连续偏导数一定存在吗?4.二阶偏导数连续和存在的区别?5.e求导公式有哪些?6.x*y关于y的偏导是多少?7.求教多元函数的全微分,偏导数,连续三者什么性质?8.y对x的偏导数是多少?1、一阶偏导的符号?形式上的符号f'1表示对f这个二元函数第一个分量的一阶偏导数,而具体是写x还是1无所谓,毕竟求出来还是一个函数,只是我们沿用自变量2、一
1.上下可以约分的函数还算间断点吗?2.判断间断点什么情况要分左右?3.垂直渐近线找哪些点?4.分段函数的间断点?5.多元函数的间断点定义?1、上下可以约分的函数还算间断点吗?求函数的间断点时,分子与分母不可以约分。首先看函数x取何值时无意义,明显x=±1时函数无意义。当x=1时函数的左极限(从负无穷趋向于1)等于﹢π,右极限(从正无穷趋向于1)等于﹣π;左极限不等于右极限,为第一类间断点中的
2023-07-05 19:04:25
2023-06-26 12:29:37
2023-07-01 03:30:32
2023-06-29 11:57:34
2023-06-21 01:14:47
2023-06-16 18:24:48