首页 > 教育资讯 > 正文

正定矩阵怎么判断(正定矩阵怎么理解较好)

2023-06-23 08:21:41 | 高校网

1、怎么根据正定二次型求正定矩阵?

本科的线性代数课程,侧重于运算。重点是:行列式和矩阵的基础内容,稍微涉及了实数域的线性变换、特征值与二次型。

而机器学习算法中,会使用到更多的矩阵知识,而这些知识是本科线代课程没有讲到的,比如:最小二乘、向量与矩阵的求导、酉矩阵、QR分解、酉等价、SVD分解、 矩阵、Jordan标准型、Hermite矩阵、Kronecker积、矩阵范数、正定矩阵、Gersgorin圆盘、广义逆等等内容。

可以说,机器学习的很多理论基础,就是建立在矩阵上,所以必须了解矩阵分析的知识才能彻底理解机器学习。

比如,主成分分析(principal Component Analysis, PCA) 实际上是一个基的变换,使得变换后的数据有着最大的方差,其计算就是使用SVD分解来完成。高校网

关于矩阵分析的学习资料:

关于矩阵分析的学习资料:

如果你不懂线性代数,建议先学一遍线性代数的知识,推荐 Sheldon Axler 的《Linear Algebra Done Right》(中文名:《线性代数应该这样学》),这本书假设你只有基础的数学知识,适合作为自学用书

Sheldon Axler

《Linear Algebra Done Right》

《Linear Algebra Done Right》英文版 下载地址:百度云下载 , 备份下载

百度云下载

备份下载

如果对线性代数有一定了解,学习矩阵分析前,建议先学习一本只有43页的小书《The Matrix Cookbook 》,这本书是一本字典型的书籍,把矩阵分析相关的名词介绍了一遍,还对很多重要的概念进行了推导,可以带你快速入门矩阵分析

只有43页

《The Matrix Cookbook 》

《The Matrix Cookbook 》下载地址:百度云下载,备份下载

百度云下载

备份下载

深入学习矩阵分析,需要扎实地对每一个概念进行理解后,再去学后面的知识。推荐 Roger A. Horn的《矩阵分析》,这本书的第0章介绍了各种定义,之后的每一章从最基础的概念讲起,循序渐进,非常适合自学

《矩阵分析》中文版 下载地址:

百度云下载,备份下载

百度云下载

备份下载

2、二次型什么时候是正定的?

定义:设有实二次型,如果对于任意一组不全为零的实数,都有f(x)>0,则称此二次型为正定二次型,并把其对称矩阵A称为正定矩阵.

正定二次型的判别方法:

a):二次型标准形中n个系数都大于零,则其为正定;

b):二次型的对称矩阵A的n个特征值大于零,则其为正定;

c):对称矩阵A的各阶顺序主子式全大于零,则其为正定.

注:设A为n阶方阵,则位于A的左上角的1阶,2阶,...,n阶子式,

即:称为A的各阶顺序主子式.

例1:判别二次型的正定性.

方法一:利用二次型的对称矩阵的特征值来判断.

先写出二次型的矩阵:

由于:

可得其全部特征值:>0,>0,>0

故此二次型为正定二次型.

方法二:利用二次矩阵的各阶顺序主子式来判定.

由于此二次型的矩阵为:

因为它的个阶顺序主子式:>0,>0,>0

故此二次型为正定二次型.

除了正定二次型外,还有其他类型的二次型.

定义:设有实二次型,如果对于任意一组不全为零的实数,都有f(x)<0,则称此二次型为负定二次型,对称矩阵A称为负定矩阵;如果都有f(x)≥0,则称此二次型为半正定二次型,并称其矩阵为半正定矩阵;如果都有f(x)≤0,则称此二次型为半负定二次型,并称其矩阵为半负定矩阵.

1、行列式法

对于给定的二次型

写出它的矩阵,根据对称矩阵的所有顺序主子式是否全大于零来判定二次型 (或对称矩阵)的正定性。

2、正惯性指数法

对于给定的二次型 ,先将化为标准形,然后根据标准形中平方项系数为正的个数是否等于n来判定二次型的正定性。

通过正交变换,将二次型化为标准形后,标准形中平方项的系数就是二次型矩阵的特征值。因此,可先求二次型矩阵的特征值,然后根据大于零的特征值个数是否等于n来判定二次型的正定性。

扩展资料:

正定矩阵的判定:

1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。

2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。

3、正定矩阵A的逆与转置一样吗?

一样的。因为正定矩阵为对称矩阵,它的逆当然也是对称矩阵,故正定矩阵的逆与转置矩阵的逆是一样的。

4、n阶正定矩阵形式?

在线性代数里,正定矩阵 (英文:positive definite matrix) 有时会简称为正定阵。在双线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则对应埃尔米特正定双线性形式)。广义定义设M是n阶方阵,如果对任何非零向量z,都有zMz> 0,其中z表示z的转置,就称M正定矩阵。例如:B为n阶矩阵,E为单位矩阵,a为正实数。aE+B在a充分大时,aE+B为正定矩阵。(B必须为对称阵)狭义定义一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zMz> 0。其中z表示z的转置。

在线性代数里,正定矩阵 (英文:positive definite matrix) 有时会简称为正定阵。在双线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则对应埃尔米特正定双线性形式)。

广义定义

设M是n阶方阵,如果对任何非零向量z,都有zMz> 0,其中z表示z的转置,就称M正定矩阵。

例如:B为n阶矩阵,E为单位矩阵,a为正实数。aE+B在a充分大时,aE+B为正定矩阵。(B必须为对称阵)

狭义定义

一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zMz> 0。其中z表示z的转置。

5、构造正定矩阵的方法?

判定二次型(或对称矩阵)为正定的方法有如下两种行列式法对于给定的二次型,写出它的矩阵,根据对称矩阵的所有顺序主子式是否全大于零来判定二次型 (或对称矩阵)的正定性。正惯性指数法对于给定的二次型 ,先将化为标准形,然后根据标准形中平方项系数为正的个数是否等于n来判定二次型的正定性。通过正交变换,将二次型化为标准形后,标准形中平方项的系数就是二次型矩阵的特征值。因此,可先求二次型矩阵的特征值,然后根据大于零的特征值个数是否等于n来判定二次型的正定性。

判定二次型(或对称矩阵)为正定的方法有如下两种

行列式法

对于给定的二次型

,写出它的矩阵,根据对称矩阵的所有顺序主子式是否全大于零来判定二次型 (或对称矩阵)的正定性。

正惯性指数法

对于给定的二次型 ,先将化为标准形,然后根据标准形中平方项系数为正的个数是否等于n来判定二次型的正定性。

通过正交变换,将二次型化为标准形后,标准形中平方项的系数就是二次型矩阵的特征值。因此,可先求二次型矩阵的特征值,然后根据大于零的特征值个数是否等于n来判定二次型的正定性。

与“正定矩阵怎么判断(正定矩阵怎么理解较好)”相关推荐
如何判断两个矩阵合同(怎么判定合同矩阵)
如何判断两个矩阵合同(怎么判定合同矩阵)

1.两个同阶方阵合同一定等价吗?2.矩阵的合同是什么?3.一个矩阵的合同矩阵唯一吗?4.两个矩阵合同秩相等吗?5.为什么矩阵合同的充要条件是惯性指标相等?6.两个矩阵合同为什么规范性相同?7.合同矩阵一定是实对称的吗?8.两个矩阵合同的充要条件是什么?1、两个同阶方阵合同一定等价吗?是的。同阶矩阵AB是合同矩阵的定义是:B=C'AC,其中C是可逆矩阵。与可逆矩阵相乘不改变矩阵的秩,所以A和B等

2023-06-29 03:01:36
实对称矩阵一定可以相似对角化吗(实对称矩阵一定能对角化怎么证明)
实对称矩阵一定可以相似对角化吗(实对称矩阵一定能对角化怎么证明)

1.重根与特征向量的关系?2.相似于实对称矩阵的矩阵是否一定可以相似对角化?3.与矩阵合同的矩阵一定是对角阵吗?4.反对称矩阵能正交对角化吗?5.什么样的矩阵必不可相似对角化?6.正规矩阵一定可以对角化吗?7.实对称矩阵的特征值一定是互异的?1、重根与特征向量的关系?特征方程中,特征值的重数定义为代数重数;而特征值所对应的特征向量所构成空间的维数,称为几何重数。通常情况下,1≤几何重数≤代数重

2023-06-25 04:42:41
正定二次型怎么判断(怎么判定二次型正定)
正定二次型怎么判断(怎么判定二次型正定)

1.海森矩阵如何判断正定负定?2.为什么二次型正定,它的正惯性指数p=n呢?3.什么叫正二定型?4.什么是黎曼时空?5.海塞矩阵如何判断负定?6.数三考线性变换吗?7.二次型特征值的性质?1、海森矩阵如何判断正定负定?如果任一非零实向量X,都使二次型f(X)=X的转置*A*X>0,则我们说f(X)为正定二次型,f(X)的矩阵A称为正定矩阵。2、为什么二次型正定,它的正惯性指数p=n呢?实二次型

2023-06-27 02:51:36
正定二次型判断方法(怎么判断正定二次型)
正定二次型判断方法(怎么判断正定二次型)

1.二次型的规范型系数先后顺序?2.线性代数,已知二次型,怎么求对应矩阵?3.正定矩阵是什么?4.正定矩阵的问题?5.正定二次型研究价值意义?6.什么是二次型?1、二次型的规范型系数先后顺序?这个顺序其实就是对角阵当中的特征值的顺序,而特征值的顺序与相似变换矩阵当中的特征向量的顺序相对应。要注意一点,正交变换是找P使,P^TAP=B,其中B是对角阵,这里P里面的列向量为特征向量,顺序要与你的特

2023-06-27 02:54:36
怎么一眼看出矩阵的秩(矩阵的秩怎么看)
怎么一眼看出矩阵的秩(矩阵的秩怎么看)

1.矩阵的秩性质及证明?2.怎样判断向量组的秩?3.矩阵的秩是什么概念?怎么计算?4.一个矩阵有几个秩?5.怎么判断伴随矩阵的秩?6.什么情况下才能用行列式判别法求矩阵的秩?7.求矩阵的秩具体过程?8.矩阵秩判断条件?1、矩阵的秩性质及证明?在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量

2023-07-12 03:21:14
3×3矩阵的秩怎么计算(矩阵的秩怎么算)
3×3矩阵的秩怎么计算(矩阵的秩怎么算)

1.3行4列矩阵的秩最多为多少?2.35矩阵的秩怎么计算?3.两个矩阵的秩的计算?4.m*n阶矩阵的秩怎么求?5.元素均为3的四阶矩阵,它的秩为多少?6.一个三行二列的矩阵的秩是多少?7.3行4列矩阵怎么算?8.三阶矩阵的秩能为哪些?1、3行4列矩阵的秩最多为多少?三行四列矩阵的秩最多不能超过它的行数和列数,所以它的秩最多为3。2、35矩阵的秩怎么计算?在求矩阵的秩时,化为阶梯型我们就可以很好

2023-07-12 05:36:16
怎么求二次型矩阵
怎么求二次型矩阵

1.二次型的秩怎么用?2.二次型的解向量怎么求?3.二阶矩阵的导数公式?4.二次型什么时候是正定的?5.线性代数,二次型结果怎么算的?6.二阶矩阵的导数公式?7.二次型一定是对称矩阵吗?1、二次型的秩怎么用?同济版的定义为A的秩。书中还有一句话,二次型的标准型所含项数是确定的,等于二次型的秩。给你简单解释一下:1,因为(实)二次型的矩阵是实对称矩阵,所以二次型的矩阵总可以(相似)对角化。(书中

2023-07-12 09:31:54
对称矩阵合同对角化(怎么合同对角化)
对称矩阵合同对角化(怎么合同对角化)

1.n阶矩阵对角化的条件是有不同的特征值吗?2.不对称矩阵和对称矩阵一定不合同吗?3.【请问】怎样判断一个矩阵是否可以相似对角化?4.两矩阵等价其行秩相等吗?5.什么样的矩阵必不可相似对角化?6.a矩阵和b矩阵相似的性质?7.为什么实对称矩阵必可相似对角化?1、n阶矩阵对角化的条件是有不同的特征值吗?矩阵可以相似对角化,这是矩阵可以相似对角化的充要条件之一。总结来说一般有以下几个充要条件1.特

2023-06-29 02:45:36